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ABSTRACT

The acoustic response due to a point source in a liguid layer
overlying a semi-infinite multi-layered viscoelastic medium is obtained
using a Green's function formalism. A matrix recurrence relation,
developed from the boundary conditions, is used to relate the scalar
wave functions in the last viscoelastic layer to the scalar wave functions
in the intermediate layers using (4x4) matrix manipulations. The trans-
formed form of the Green's function is then obtained by applying appropriate
boundary conditions at the top and bottom of the liquid layer. The Green's
function is then written in integral form convenient for computer evaluation,
since the integrand can be computer for many layers using the recurrence

relation. Special cases are discussed and compared with known results.
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SOUND PROFAGATION IN A LIQUID LAYER OVERLYING 4 MULTI-LAYERED VISCOELASTIC HALFSPACE
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Abstract

The acoustic response due to a polnt source 1n a
liquid layer overlying a semi-infinite multi-
layered viscoelastic medium is obtained using a
Green's function formalism. A matrix recurrence
relation, developed from the boundary conditions,
is used to relate the scalar wave functioms in
the last viscoelastic layer to the scalar wave
functions in the intermediate layers using (4%4)
matrix manipulations. The transformed form of
the Green's function is then obtained by apply-
ing appropriate boundary conditions at the top
and bottom of the liquid layer. The Green's
function is then written in integral form con-
venient for computer evaluation, since the inte-
grand can be computed for many layers using the
recurrence relation. Special cases are discussed
and compared with known results.

Introduction

The first paper of this series treated the
acoustic response of a semi-infinite liquid over-
lying a homogeneous viscoelastic halfepace

{(Ref. 1), This paper treats the more general
case of a point source in a liquid layer of
finite depth overlying & series of n parallel
layers of a viscoelastic solid (Fig. 1). Each
layer has arbiltrary density Py and complex vel-
ocities of wave propagation 0y and B{. This
model corresponds rather closaly to the strati-
fication of sediments on the continental shelf.
Each aubbottom layer is assumed to be a homo-
geneous, isotropic Voigt solid, deseribed mathe-
matically in the main text of this paper.

This problem and closely related problems have
?2?“(?5“died by numerous investigators(Z)-(3)-

’ . Jardetsky(Z), developed the peried
equation or dispersion relation for a layered
elastic halfspace with a point source in the
first layer. The period equation was expressed
as a determinant of order (4n-2), where n was
the number of elastic layers. He could not ob-
tain the roots of the period equation explicicly
due to the algebraic complexity, but he did make
an important observation. This was that, of all
the 2n branch point singularities, only the two
branch line integrals corresponding to the two
branch points of the last {semi-infinite) layer
contribute to the response. Thus, the total re-
sponse consists of A residue serles (each term

of which corresponds to a solution of the peried
equation) and contributions due to branch line
integrals for the branch point singularities of
the last (gemi-infinite) layer.

Thomson(a) used a matrix formalism for determining
the transmission of plane elastic waves through a
stratified splid medium, He developed a recur-
rence relation relating the velocities and stres-
ses in adjoining plates or layers using Snell's
law and continuity of particle wvelocities and
stresses at the interface. Successive application
of the recurrence relation enabled him to relate
the velocities and stresses at the last plate in
terms of those of the first plate. Shaw and

Bugl 4 pointed out that Thomson used the unneces-
sarily reatrictive assumption that the shear
modulus was constant in all the layers. They alsc
mention that Haskell(5) was apparently the first
to remove this restriction.

Shaw and Bugl(q) refined the approach of Refs. (3)
and (5) by expressing the displacements and
stresses in terme of the layer's parameters and
then used a more direct matrix formalism. In
addition, they considered the effects of viacoe-
lasticity by treating the elastic constants X and
L as complex quantities.

The present paper closely parallels the appreoach
of Ref. (2), except that the first layer is taken
to be a liquid. This enables us to express the
reaponse due to the poiant sogrc% gsing a scalar
Green's function formalism(6}, (7 We depart
from Ref. (2) to develop a recurrence relation .
between the coefficlents of the scalar potentlals
of adjacent viscoelastic lavers by applying boun-
dary conditions at the interface. Successive
application of the recurrence relation then
enables us to express the coefficienta of the
first solid layer in terms of the last layer.
Finally, boundary conditions are applied at the
top and bottom of the liquid layer to obtain the
golution for the response in the liquid. The
advantage of this approach is that computations
fnvolve 4%4 matrices inastead of matrices of order
(4n-2), where n is the number of solid layers.
This makes the formalism ideal for machine compu-
tation.

The recurrence relation developed here differs
from that of Refs. (3), (4} and (5) in that the
problem treated is three-dimensional and the
recurrence relation involves coefficlents of
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scalar potentials instead of displacements and
stresses. .

Analytical Development

The governing equation in the liquid with a point
gource at r = 0, z = 2" [Fig. (1)] 19 taken from
Eq. (A-2) of the preceding paper{l),

@+ KeGIT, W = -8 Q)

where 6(;—;') = giz%%éiiill ,

I
G{r|r', w) = G(r,z,z",w),

and kg = wzfcg.

The quantities G and cp are the Green's Function
and the liquid's speed of sound {(adiabatic),
respectively. The symbol & is Dirac's delta
function. A time dependence of the form e w

is taken througheut, and 1s omitted for brewvity.

The governing equations for the _'jE viscoelastic
layer may be written

2=
u

win. + T+ O )v(v-tj) -0 (2)

Py My T By My T ATy

where p,, a s ., A, are the layer's density,
displacémeni ana Laté parameters. We introduce
Voigt viscoelasticity by writing the Lamé para-
meters in the frequency domaln as
Bo=ut o+ iwptt
and
A= AT 4+ dwd't

Follewing Ref. {1), Eq. (2) reduces to tweo
scalar Helmholtz equations:

2 2 B _
V- + kuj)¢o.j =0 {2-a)
and @+ K208, = 0 (2-b)
By "Bi '
where 2 2
& . a@, ké -2,
o3 o, 1 B
i j

the speed of the dilatational wave aj and the
shear wave B. are given by

A'+2p;+im(15'+2u")

az = s
3 p
3
and E ST IR
2
g, = .
J .
]

The displacements may be written as

-+ - +-+
u, = u u
B

3
4 o (3)

j *
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where ;aj = V¢uj1,
Bar = TXTxe_d,.)
qu = e, gy’
> -
V'qu =0, quaj =0,

~

~and ez is the unit vector in the z-direction,

\
Sclutions to Eqs. (1) and (2) may be cbtained
conveniently using a Fourler-Bessel transform

A(D) = ﬁ(r)Jo(Cr)rdr (4-a)
o

and the inverse transform
o

AG) =]5(c)a0(cr)cdc : (4-b)
[}

The lower bar denotes a transformed quantity.
Applying the transformation {4-a) to Eq. (L)
results in the following differential equation

2 L
[%-aé]g(;,z,z.hm (5
dz 2’
2 2

where ao = VLT - ko .

We wrlite solutions to Eq. (5) above and below the
source as

_ 0 (] ' _
G, = Pe + Qe 2' <z < h0 (h-a)
-8, a4z
G, = Re + Se s 0<z<z'. (6-b)}

We may eliminate three of the unknowns in Egs. E&;
using the continuity and jump condition at z=z'
and by noting that the pressure, which is propor-
tional to G, vanishes at z=hp. Egs. (6-a and b)
may then be written as

G, = Z%;a fkosinh[ao(ho-z)] -2 sinh[ao(z'—z)?{
(6-c

A
4]
and G = ZF;; sinh[ao(ho—z)] . (6-d)

where A, is an unknown, as yet, function of I to
be determined from the boundary conditioms at zw=U,

Solutions to Eqs. (2-a and b) may be written in
transformed form as

~
f a_. -a_,Z{
-1 aj aj” - _
Qaj = aﬂaaj FAje + Bje j , (7-a)
and X
o1 %8y° 83 .
%oy 7 Trag, ),Cje *Dye ’ (-v)
where 2 2
a(lj - L - k(].] »



="‘:2_k2 3

a4 B4

and h{j—l) <z < hj' We note that the nEE-Bemi-
infinite layer has only two terms, as Bn =0,

D, = 0, because the potentials must remain

finite as z * -@. This implies that the A, and

C, terms in Eqs. (7) represent downward- 1
traveling waves and the B; and D, terms represent
upward-traveling waves. }t follows that the
stipulation that B =D =0 is essentially a
radlation condition.

Boundary Conditions

We must evaluate the 4n-2 functions Aj, B, Cj,
D;, =1, 2, ... nin Eq. (7). We do this by
applying boundary conditions at each interface

between solid layers. We first express the dis-

We write the stress tensor as

o 8 .+ 2ue

1k T 005k ’ (8~d)

ik

where € iz the strain tensor and & Kk is the

Kronecker delta. We need the stress components

Oz and Uzr’ whose corresponding strains are

written as

auz
f22 7T 8-e)
and Bur 3uz
e =T Yoo -6

The boundary conditlons are continuity of stress
and displacements at the interface, The first
follows from the dynamic equations of motion.

The second follows from the conservation of mass.
For the jEE.interface, we write

placements and stresses in terms of the poten- i) u = u at z = -h (3-a)
tials. The displacements in a cylindrical z] z(}+1) h
{(r, z, 8) coordinate system may be written "
(taking into account the B-symmetry) as ii) Uy T Y (§+1) , (9-b)
B anB ii r
e P (8-a) 1 9a1 = e 60
3 2 i o] =g 9-d
u =t ke, (&-b) Y Taay T Taaph) G-
dz Applying Eqs. (8) to (9) gives a system of equa-
and ticns that may be written in matrix form as
R e la,] &, . = [ag,yy] A (10
%1 %10 (47 CEH, o
where [aj] i1s a 474 matrix given as:
[ 2,22 2,2 2 2. 2 2. .2 |
- 28" -k -2 2
2 2 2 2 2 2 2.2
- - -k
ZDijaaj ZDijaaj oij(ZC kBj) Dij(ZE Bj)
[aj] = (11-a)
1 1 _aBj aBj
2 2
L ”aaj aor.j g [4 ]
and A(j+1) ] iz a (4x1) columm matrix (vector)-, setting (j+1) = j'":
[ A e_aujrhJ )
A
351
+ h
e @
N
By
i, - ! 7o)
3.3
-a h
C..e Bi'y
]
aﬂj'
e,
D_teaﬁj 3
L agy’ _
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s & = [A
R L

One may express K t
3.3

where

= -a_,,h

AR

[Aq-]=

and

'l
]

i C,: . (11-d)

We now may write Eq. (10) as

X, - (12)

[aj}{ﬁ-j la, = {aj.I[Aj"j 3

%

Eq. (12) is a recurrence relation relating the
coefficients of the JIB layer to the j'=(j+1)EL

layer. Selving for Aj gives
A=A, 1 a0 e, 00, (R (12-a)
3 3.3 i kR I R
We may define
_ -1, -1 _
[bj"j] = [Aj,jl [aj] [aj.][Aj"j]. (12-b)

which allows Eq. (12) tco be written in a simpler
form:
+

K-t

. 1

K(j+1) . (12-¢)

P (541,43
One may apply the recurrence relation (12-c) suc-
cessively to eliminate the coefficients of
intermediate layers. In particular, one may
express the coefficlents of the first layer (j=1)
to those of the last layer (j=n) as a product

- n-1
SN [b(z+1),£{izn ’ 1%
where we may set
n-1
M) = 121 [b(£+l),£1 , (13-a)
where {M] is a {(4%4) matrix, so
11 = [M} Eh i (13-b)

B40—0CEAN '72

{1l=-c)

We recall that the second and fourth elements of
K are zero due to a radlation condition. If one

dénotes the elements of [M] as My, , ONe may ex-
pand Eq. (13-b) as follows:

A A C
a m. 2 4@p . 2

a 11 aum 13 aBn

B A c
O .

al 21 an 23 aBn

c A c (13-¢)
e |
ag) 31 8, 33 8

B A c
s
aﬂl 51 an 43 aBn '

Eq. (13-c) relates the four coefficients of the
first solid layer to the two coefficients of the
last sclid layer by means of the elements of the
[M] matrix. The elements of the [M] matrix can
be computed as a functiom of { knowing the den-
sities and wave numbers of the viscoelastic
layers.

Now one may relate the four coefflcients of the
first sclid layer to the unknown coefficient A
[Eq. {6}] of the liquid laver by applying boun-
dary conditicns at the liquid-solid interface z=0.
We write

1) %2y = 0 " o, atz=0, (l&-a)
1
i1) u =u " (14-1)
%0 “
and iii) Urzl LI . (l4-c)

where pg 1s the liquld pressure given as

oy = —posz for r 4 t'. Using Eqs. (8) in (14}

results in the matrix relation:



aocosh aoh6 aOt] _aal -z -
2 2 2 .2 2.2 2.2
P sinh ach, (2; kBl) P82 kg ) 20 BiT7ap,  20.BiT7ag, x
2 2
0 —2aa1 2“0;1 (2§ —kBl) 2z _ksl}
[ AO ]
2
!
8x1
Bl aocosh aoz
a_
x ol =2 p wzsinh a.2' (15)
a 0 0
[ 0
a
&1 0
%1
- %1
Applylng the result (13-c) to Eq. (15) gives
i t
ancosh aoh0 bl2 b13 Aofao aocosh ay2
o) wzsinh ah b b A fa - 2 s} mzsinh a.z" (16)
0 00 22 23 n' on 34 0 0 '
0 iz Pa3 /% 0
where
X Ky = bypbaz = BygPyy
by = (ymmydag, - Shmyte) and
2,202 K, = b, b ~b b, .
b,y = £yB] (25 kg ) (my Hmy ) - 27 °12°33 7 "13°32
2 2 Substituting the result (17) into the expression
- — L]
201Bl§ aBl(m31 mﬁl) R for the Green's function [Eq. (6)] yields
by, = ~2a,, (@ ) + L2k Yy tm, ) 6(L,2,2') = ~— sinh[a. (htz )]
32 11" 21 Bl 31 741 —rErme Qﬂao oo >
_ 2
big = (mygmmygday) - So(mypmy)

by = "151(ZC k61)(‘“13 myy) -

-2 Blaﬂl(m33—m43)

and b (m

-m, .} + (2C k 1 (m

2

33 = ~2351 (8137,
We may solve for AU from Eq.
rule A
Ao 2.2
=TT A a
[+ N AU
where
= ty _
Al = Klao cosh(aoz ) K
&0 = Klao cosh(aﬂho) - K

2

+m, o) .

33 743

{16) using Cramer's

(17)

2 , )
PO sinh(aoz ),{17-a)

2
Pyt sinh(aoh

0),(17—b)

xEKlaocosh(a0z<) - K,pw 51nh(a )2
2

cosh(aoho) - szow Sinh(aoho)j

(18}

K13p

where z., = Max(z,z') and z. = Min{(z,z'}. Using
the symbolism 2,, 2z, combines the two expressions
Egs., (6-a and b) for G, and G Into one due to
reciprocity. We note that the period equation is
obtained by setting the denominator of Eq. (18)
to zero, or from Eq. (17-b)

ﬂo =0,
The actual Green's function G{(r,z,z',w) is ob-
tained by taking the inverse transform of
Eq. (18) using Eq. (4-b)

6(r,z,2" ) = f(0,2,2 0 I (0L . (18-a)

OCEAN "72—541



Special Cases

1) One viscoelastic layer (n=l}., Here we set in
Eq. (13c) m y = @34 = 1 and the other m M 0.
The Green's %unction reduces to Eﬁz,z,z'} =

[u]

2.2 .2 2 4 P
ao[(ZC —kBl) ~4a jag, 5" Jeosh{agzz )-a kg sinh(agz, )

. (19)

1
' b
= Zra sinh[ﬂo(h0+z)] 0
0 pl
== a
.DO 0

Eg. (19) agrees, after taking the Ilnverse trans-
form, with Press and Ewing's result for the
liquid layer over a semi-infinite elastic sgolid
[their Eqs. (26) and (27}]. Our result includes
an extra 1l/4T factor that results from the Green's
function formalism, and the notation and sign
conventions differ,

2) Infinite depth of liquid layer (h0+W). In
this case Eq., (18) reduces to:

0 .
1 2.2 .2
-{a.z_) — a [(2z7=k,.)
6(z.2,2") = 2 0 Py 0 81

2.2 .2 2 [
[(2z —kBl) —4aalaslﬁ-]cosh(aoho)—aalkﬂlsinh(aoho)

E(Cszsz‘) =
-{a.z )fk a.cosh(a.z =K. p wzsinh(a z )}
__Z e 0%> ; 170 0%<” 7270 0°< ;
" 4Ta 2 ‘
¢ (Kyag - Kypgw™) J
N (20)
Here the frequency equation is simply
2
Kla0 - szow -0 . (20-a}
3) Semi-infinite liquid over a viscoelastic
halfspace (h0+W, n=1}, The Green's function
reduces to:
- 4a .a §2]cosh(a z. ) + kﬁ a .sinh{a.z.)
ol™gl 07« Bl a1 0°< QN

AWao )

)

This result %s the same as Eq. (A-7) of the pre-
ceding paper l), as would be expacted.

Results and Conclusions

A general expression [Eq. {18) is obtainec, i
transformed form, for the acoustic response due
to a point source in a liquid layer overlying a
multi-layered viscoelastic solid halfapace.
Special cases of the result are presented

[Egqs. (19}, (20} and (21)] for one viscoelastic
layer, infinite ligquid depth and one viscoelas-

tic layer combined with the infinite liquid
cepth.,

To ohtain the actual response, one must take the
Inverse transform of the expression [Eq. (18), or
ore of Its special cases]. Taking the Inverse
transform requires evaluating a definite integral
of the form indicated(ig Eq, (18~a), This inte-
gration was discussed and appraximate results
(Jeading terms in an asymptotic axpansionng)
vere obtained for the special case corresponding
te Eq. (21).

The same techniques may he applied to Eq, (20)
(the infinite liquid depth case}, as the intee
rand is In the same form. The perjod equation
qu (20-a)] hecomes more complicated due to the
presence of sollid layers between the two half-
spaces. The solid layers (plates) produce a
waveguide~1ike effect which manjifests Itself in a
residue serles, each term representing one m?g?
of propagation. As pointed out by Jardetsky .

B42—-QCEAN '72

1 2 2.2
LG

4

2
= bagiag ] ke

only two branch Iine integrals will contribute to
the response. These Integrals correspond to the
branck point singularities of the last viscoelas-
ti¢ layer (aan =0, aBn =0).

In the radiation zome, the steady~state plane-
wave reflection coefficient may be obtained from
Eg. (20) by expanding the sinh and cosh terms to
yield the following:

nao(z>—z<) -ao{z>+z<)
+ g

1
E(C,Z,Z') = ?,"__ao X
) 2377
Kia, + K,p.w
x 3120 " 2P 2 _ (22)

K.a - K.p w2\

170 250
The first term in Eq. (22) is the direct wave, as
may be seen from Sommerfeld's(lus result. The
second term represents the reflected wave. This
follows from the leading term of a steepest
descent integrat{ig of the inverse transform of
the second term, Following the development of
Ref. (1) gives, for the plane-wave reflection
coefficient;

2
Klaﬁ + szow
——
K18g - &5pqu Al AN

where {, = k.sinf, 8 = sin‘l(z—) is the angle of
0 0 RI

L

(22-a}



incidence, and Ry = YT +(z+z')". One notes that
the reflection coefficfent given in Eg. (22-g)
is in a form similar to the usual impedance rela-
tion representing the reflection coefficient for
two liquids

4~ %

I+ 7

For reasems discussed in Ref. (1), the primary
interest in our research is in the special case
corresponding to infinite water depth. The ex-
plicit calculation of the acoustic response for
the two-layer case (n=2) using the methods of
Ref. (1) is an ambitious undertaking due to the
algebraic complexity. For three layers or move,
direct calculations become unmanapeable, For
this reason, further development will be accom~
plished using machine calculations. That is,
the integrand will be evaluated for arbitrary
layers with the aid of the recurrence relatiom,
and the subsequent integration will be done
numerically, In addition, studies will be done
separately to find the roots of the period
equation [Eq. (20-a)].
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ERRATA

"Sound Propagation in a Liquid Layer Overlying a Multi-Layered Viscoelastic Halfspace"

P. 539:

equation (11-a)

P. 541:

equation

%12 =

byy =

bry =

b3 =

bz =

bgy =

equation
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2 2
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°1Bi(252'k§1)(m11*m21) * 29131‘2a81(m31'm41)
28, (g mpy) * (2C2—k§1)(m31+m41)
(my3-myg)ay; * ;2(m33+m43)
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equation (18)

G(C z, z ) 2 SJ-nh{a (h -Z )} M O ssenwa
ao >
P. 542:
equation (19} pl > 3 4 \
2 % ay[(28"-kg,)~4a_1a5,C ]cosh(a z )+a, kg sinh(agz )
G(t,z,z2') = Tra sinh{a (ho z.)
0 04

p_ 30{(26 kBl) -4a ,a 12; Jeosh (aghg)+a ;lsmh(ao 0
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